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Solutions and Hints to Selected Problems
The Cartoon Guide to Calculus

nov. 15, 2012

1. all t ≠ ⁄.

2. all b ≥ ⁄ except b = 4

3. all x ≠ ±1

4. the interval [–2, 2]

5. all ˇ except ±(√Øπ)/3 and (π/2) ± nπ, 
n = 0, 1, 2, ...  

6. all x ≠ 0

7. the interval (–ˆ, 0)

8. all real numbers

9. the interval (1, ̂ )

10a. 

d

c

d

c

10d. 

d

c
y = f(x–c)

y = –f(x)

y = f(2x)

10e.

Chapter 0. 11b. deepest inside: w(x) = x2 – 1;
     middle: v(w) = ln w
  outside: u(v) = √Øv
 h(x) = u(v(w(x)))

11c. inside: g(x) = ex ; 
 outside: f(x) = 4t3 + t2 + 6t – 99
 h(x) = f(g(x))

12. let y = x + c.  then

    P(y) = b0 + b1(x + c) + b2(x + c)2... + bn(x + c)n

expanding all the binomials and collecting like terms 
results in a polynomial

    a0 + a1x + a2x2... + anxn 

this is P(x + c), so

    P(x) = a0 + a1(x – c) + a2(x – c)2... + an(x – c)n 

note that an = bn.

13. the function is one-to-one but not increasing on 
its whole domain.

14.

1

x

ˇ

15. doubling time is 
ln 2  years.

                        Ø r
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Chapter 1.
1. limit is 6

2. limit is 6 + C

3. limit is 1/4

4. limit is –ˆ

5. limit is 6

6. limit is 0, as the denominator goes to ˆ.

7. substituting y = 1/(x – 1) makes the 
expression (after much simplification) equal to

13. choose the interval J so that if x is in J, then

12. take I to be any interval around L of 
radius < |L|/2. by definition of the limit, 
there must be an interval J around a on 
which |f(x) – L| < |L|/2. but

|L| – |f(x)| ≤ |f(x) – L|  so

|L| – |f(x)| < |L|/2  from which

|f(x)| > |L| – |L|/2 = |L|/2

|f(x)| > |L|/2  and  |f(x) – L| < ´L2
                                                             Ø 2

Chapter 2.
1. f'(x) = 3x2 + 5

3. P'(x) =   –2x
             Ø(x2 + 1)2

5. sorry! this is the last remaining problem 
out of place. it belongs in chapter 3, where 
we learn how to differentiate fractional 
powers. the answer is

    h'(x) = –sin x + 5 x–4/3

                        Ø3

6. R'(x) =    –2
             Ø(x – 1)2

8. v'(t) = tan t sec t

9. F'(x) = –(1 + x)
             Ø x2ex  

11. Q'(x) = –529    2x3 – x2 + 1
                     Ø(x3 – x2 – x – 1)2

13a. velocity at time t is A'(t) = –9.8t + 30. 
plug in t = 3 to get A'(3) = (–9.8)(3) + 30 
= 0.6 m/sec.

13b. here A'(t) = –9.8t + 45. the hint 
suggests that at the top of its flight, the 
ball’s velocity is zero. set A'(t) = 0 and 
solve for t. you should find that the ball 
reaches its highest point at around t = 4.6 
seconds. Plug that into A(t) to find the 
maximum height. the total time of flight is 
9.2 seconds: 4.6 seconds going up, and 4.6 
seconds coming down.

3 +  1
      Øy

the limit as yåˆ is 3.

8. limit is 2

9. limit is ˆ

10.  x sin 1  ≤ |x|
            Øx

     x sin 1  ≥ –|x|
            Øx
limit as xå0 must be 0.

15. assume f is even. then 

f'(–x) = Ô f(–x + h) – f(–x)
                Ø        h 

        = Ô f(x – h) – f(x)
                 Ø       h 

        = Ô f(x + h) – f(x)  = –f'(x)
                 Ø      –h
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Chapter 3.
1. h(u) = f(g(u)) = cos2 u,  v(x) = g(f(x)) = cos(x2)

   h'(u) = –2sin u cos u,   v'(x) = –2xsin (x2)

3a. f'(t) = ⁄(2t + 1)(1 + t + t2)–1/2

3b. g'(x) = –25(sin x  + cos x)(cos x – sinx)24

3d. P'(r) = 20r(r2 + 7)9

3f. f'(y) = – sin√Øy
                Ø 2√Øy

3h. F'(x) = ⁄e
x–a

                          
Ø 2

5a. ln f(x) = 5ln x + x – ‹ln(1 + x)

 f'(x) =  5  + 1 –      1
 Øf(x)     Øx          Ø3(1 + x)

f'(x) = x5e x(1 + x)–1/3 ( 5  + 1 –       1    )
                           Øx          Ø3(1 + x)

    = ‹x4e x(1 + x)–4/3(3x2 + 17x + 15)

5b. g'(x) =   1  (⁄ln x + 1)x√Øx

               Ø√Øx

7a. f–1(y) = arcsin (y – 2)

7b. f–1(y) = ±√Øy2 – 1

8a. T'(t) = (250)(0.46) e–0.46t 

            = 115e–0.46t

plug in values of t to find the rate of heating. 
for instance,

Chapter 4.
1. the derivative of h is

    h' =       V'
          Øπh(2R – h)

3. start with the basic circle relations:

C = 2πr,   A = πr2

from these,

C2 = 4πA,   so   A' = CC'/2π

4. when y = 12, y' = 3/4 meters per second.

5. 

d

x

25

B

C

let x be the snail’s distance from corner B. 
the problem states that x'(t) = –1 (negative 
because the distance is getting smaller). also:

d2 = x2 + 252    so

dd' = xx'

when x = 15, then,

d = √Ø225 + 625 = √Ø850 ,   and

d' = –    15     é  0.514 cm/sec. 
         Ø√Ø850

T'(100) = 115e–46, a very small number!

8b can be solved without differentiating. 

T(t) = 275 – 250e–0.46t

274 = 275 – 250e–0.46t

1 = 250e–0.46t 

solve for t by taking the logarithm.

t = ln 250  é 12 minutes
     Ø 0.46

9a. flea  b. mouse, not flea  c. neither  d. mouse, not flea  
e. neither  f. mouse, not flea  g. flea
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Chapter 5.
1a. x = –⁄ is a minimum.

1c. h'(t) = 6t2 – 6t – 36, which can be factored:

    h'(t) = 6(t – 3)(t + 2)

t = 3 is a minimum, t = –2 a maximum. 

1e. F'(ˇ) = cosˇ – sin ˇ. this is zero when 
cosˇ = sinˇ, i.e., when the angle ˇ is either 
π/4, (π/4) + 2π, (π/4) + 4π, etc., where

sinˇ = cosˇ = ⁄√Ø2 , or 5π/4, (5π/4) + 2π, 
etc., where sinˇ = cosˇ = –⁄√Ø2 .

F'' = –F, so

F''(π/4) = –√Ø2 ,  F''(5π/4) = √Ø2

so the maxima are the points

ˇ = (π/4) ± 2πn,  n = 0, 1, 2, ...

and the minima are the points

ˇ = (5π/4) ± 2πn,  n = 0, 1, 2, ...

1f. try implicit differentiation for this one!

5. you were asked for the lowest-cost route 
across a pond from (1, 0) to (–1, 0), when 
construction on land is cheaper than building 
across water.

(–1, 0)

P

D
ˇ

(1, 0)
x

=cos ̌

the problem is something of a trick question, as 
we’ll see. there are two basic ways to solve it, 
and the difference between them illustrates an 
important point about how to approach math 
problems.

First, let’s take the direct approach, using the 
formulas and techniques laid out in recent 
chapters. warning: hairy algebra ahead!

the cost per unit length over land was given as 
$4, and over water as $5. to make the algebra a 
little simpler, let r be the ratio of land cost per 
unit to water cost per unit: in this case r = 4/5. 
we can always assume r < 1. otherwise, just build 
straight across the water!

the problem can be set up with either x or ˇ 
as the variable. let’s use the angle, as was 
suggested in the book.

we can write the cost as 

C(ˇ) = rˇ + D

because D is the length of road over water, and 
ˇ is the length of the arc. (actually, C is only 
1/5 of the cost, but minimizing this will minimize 
the cost also, won’t it?)

by the pythagorean theorem,

(1)   D2 = 2 + 2cosˇ

we seek critical points of the cost, i.e., values of 
ˇ such that C'(ˇ) = 0. now

(2)  C'(ˇ) = r + D'(ˇ)

Find D' by implicit differentiation of equation (1).

(3)  D' = –sinˇ
            Ø  D

A2 = 4 – x2,  so  AA' = –x,  A' = – x
                                             ØA

this can be zero only when x = 0, and it is 
fairly obvious that this must be a maximum.

1h. same maxima and minima as problem 1e.

3. if one side of the rectangle is x, and 
the perimeter is P, then the adjacent side is 
(P/2) – x, and the area, as a function of x, is

A(x) = x(P – x)
            Ø2

this has a maximum when x = P/4.

4a. T = v0sinˇ
           Ø 9.8

4b. D'(ˇ) = v0
2  

(cos2ˇ – sin2ˇ)
               Ø4.9

this is zero when cos ˇ = ±sin ˇ, i.e., when

ˇ = π/4, 3π/4, etc., in other words, when the 
catapult is aimed upward at half a right angle. 
Note that this does not depend on v0!!
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At a critical point, then, where C' = 0,

(4)  D'(ˇ) = –r   or   
–sinˇ  = –r   or

                             Ø  D
(5)  sinˇ = rD

now we solve for ˇ. squaring (5) gives

sin2ˇ = r2D2

now substitute for D2 from (1):

sin2ˇ = r2(2 + 2cosˇ)   or

1 – cos2ˇ = r2(2 + 2cosˇ)   or

cos2ˇ + 2r2cosˇ + (2r2– 1) = 0

this is a quadratic equation in cos ˇ. 
applying the quadratic formula gives

cosˇ = ⁄(–2r2 ± √Ø4r4 – 4(2r2 – 1) ),

which, to my immense relief, simplifies to

       = –r2 ± √Ø(r2 – 1)2 

       = –r2 ± (r2 – 1)

the plus sign gives the boring solution 
cosˇ = –1, D = 0, which corresponds to 
going all the way around by land. (in fact, 
D' isn’t defined when D = 0. see why?) let’s 
look at the solution with the minus sign. 
in that case, at the critical point,

(6)  cosˇ = 1 – 2r2

                    
is it a maximum or a minimum? let’s try the 
second derivative test. r is a constant, so 
the second derivative is (apparently) 
simple. from (2),

C''(ˇ) = D''(ˇ)

and D'' comes from (3):

D'' = –Dcosˇ + D'sinˇ   
or

       Ø         D2

(8)   D2D'' = –Dcosˇ + D'sinˇ

(D2 is positive, so this has the same 
sign as D''.)

luckily, by now we can find all those numbers. 
at our critical point ˇ, from (4) and (6),

(9)   D' = –r   and  cosˇ = 1 – 2r2

we find D by substituting 1 – 2r2 for cosˇ in (1):

D2 = 2 + 2(1 – 2r2)

and sinˇ from the usual trig identity:

sin2ˇ = 1 – (1 – 2r2)2

working these out, you should find

(10)  D = 2(1 – r2)⁄   sinˇ = 2r(1 – r2)⁄

at the critical point, then, we can plug these values 
into (8), and after an annoying amount of algebra in 
which we must be very careful to keep track of our 
minus signs, we find

(11)  D2D'' = –2(1 – r2)3/2

note a couple of things here: first, it’s O.K. to take 

the square root, because r < 1. second, (1 – r2)3/2
 is 

positive. that is, equation 11 says that the second 
derivative is negative. this critical point is not a 
minimum at all: it’s the point where the cost of 
building the road is a local maximum!!!

the optimal road will always be either straight 
across or the long way around, whichever is cheaper. 
when r = 4/5, as given here, it’s cheapest to go 
straight across, at a cost of (5)(2) = 10, rather 
than the long way, which would cost 4π é 12.57.

so... was all this math a waste of time? maybe, maybe 
not! we certainly got a calculus workout in the 
process, and learned something about chords in a 
circle...

on the other hand, we could have started by making 
a crude graph (or using a graphing calculator). then 

we’d have seen that C(ˇ) = (4/5)ˇ + (2 + 2cosˇ)⁄ 

has roughly this shape:

and we’d have known 
ahead of time that 
there was no point in 
looking for a cheaper 
path going partway 
around the circle. the 
lesson is: get to know 
your function before 
you attack it!
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Chapter 5 (cont'd).
6.

3

4

ˇ

ˇ
L

this one is far 
easier to solve 
using an anglular 
variable. I get 
this answer:

ˇ = arctan ıØ(3/4) é 0.7375 radians

L = (4/cosˇ) + (3/sinˇ) é 9.86 meters

Chapter 6.

2. √Ø67 é √Ø64 +    1    (67 – 64) = 8 Ø
3

                      Ø2√Ø64                  16

4. arctan (1.1) é arctan 1 +    1    (0.1)
                                  Ø1 + 12

                  = π +  1
                     Ø4     Ø20 

5. limit is Ó   2x    cos(x)2 = –2.
                  Ø–sin x

7. limit is 4.

9. limit is 0.

12. l’hôpital’s rule does not apply.

13c. P(x) = 1 – x2
 +  x

4
  – x6

 + x
8

                   Ø2!     Ø4!     Ø6!     Ø8!
                
Chapter 7.

 1.  f(2) – f(0)  =  15 – 3  = 6
    Ø  2 – 0          Ø  2

     f'(x) = 3x2 + 2

set f'(x) = 6 and solve for x. answer = 2/√Ø3

     8     = 1    or
 Ø(4 – x)2    

(4 – x)2 = 8

this has two solutions, but only one of them is on 

the interval [0, 2]. the answer is c = 4 – √Ø8 .

5. note that the function is even.

6. c = arccos (±√Ø(a/tan a) )
7. the function is increasing, and therefore can cross 
the x-axis at most once. it does, in fact, cross once, 
as you can see by considering the function’s values 
when x is very small and very large.

8a. the derivative P'(x) is zero at only one point, 
so there can be at most two points a and b with 
P(a) = P(b) = 0.

8b and 8c follow by bootstrapping one degree 
at a time.

10. f(b) ≤ 7(b – a) + 2

11. the mean value theorem isn’t violated because the 
function is not defined at x = 2.

12. apply the mean value theorem to the 
function f – g.

2. c = ln (e–3 – e) – ln 4

3. you should find this equation to solve for x:

Chapter 8.
1.  Elow = 0 + 3(1)2 + 3(2)2 + 3(3)2 = 42

2. Ehigh = 3(1)2 + 3(2)2 + 3(3)2 + 3(4)2 = 90

3.  ⁄(Ehigh + Elow) = 66.

4. 3(( 1 )2
+ ( 3 )2+ ( 5 )2

+ ( 7 )2) = 63 
       Ø2        Ø2        Ø2        Ø2

5. s(t) = t3, and s(4) – s(0) = 64

6. using heights at the midpoints of the intervals:

2( 1 + 1 + 1  + 1  +  1  +  1  + e2 – 7 ) é 1.964
   Ø3    Ø5     Ø7     Ø9     Ø11    Ø13     Øe2 + 7
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Chapter 9.

2.  2 x5 + C
    Ø15

4.    –1   + C
    Ø1 – x

6.  ln(9 + x2) + C

7.  ⁄arcsin( x ) + C
              Ø2

9.  sin2x + C

12. note that 3x2 = ∂(x3 + 1).

the antiderivative is ⁄e(x3 + 1) + C.

15.  ln|x + 1| + C

16.  do a partial fraction 
decomposition to get

⁄ln|x – 1| – ⁄ln|x + 1| + C

17. trivial

19.  ‹sin3ˇ – ‹cos3ˇ + C

21.  ln|t3 – t2 + 1| + C

23.  –⁄x2 + C  when x ≤ 0
       ⁄x2 + C  when x ≥ 0

25.  ln|f(x)| + C

Chapter 10.
1. here is the graph y = g(x) with shaded regions showing the 
definite integral. squares above the x-axis cancel those below 
the x-axis. therefore, the integral is equal to the area of the 
one excess square above the axis minus the two slivers at 
either end.

answer is 1 – 0.086 – 0.358 = 0.556

2. the sum Sn can be expressed this way:
 

∑( iT )2( T ) = T
3  

∑ i3 = T3( 2n3 + lower order terms )
       Ø n     Øn      Øn3                 Ø           6n3

its limit as nåˆ is ‹T3.

4. on any subinterval containing x = 2, the function is 
unbounded, i.e., its values åˆ as xå2, so there can 
be no maximum value on that interval. 

Chapter 11.
1.  120 + 18 + 138

3.   1  (251 – 1)
    Ø51

5.  (–1)n

    Øn + 1

6. ⁄(arcsin 1 – arcsin (√Ø2 ))
                           Ø2
   = ⁄(π/2 – π/4) = π/8

8.  –2

10.  ⁄e9 – ⁄

12. this depends on the fact that |™ f(x) dx| ≤ ™|f(x)| dx. since 

M(b – a) is an upper sum of |f(x)| on the interval, it follows that

™|f(x)| dx ≤ M(b – a) 

and the other inequality follows.

14.  π  =  1  –  1  +  1  –  1  +  1  –  1   +  .......
     Ø4            Ø3     Ø5     Ø7     Ø9     Ø11

isn’t that a beauty? (not to mention almost unbelievable.)
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Chapter 12.
2.  –⁄(1 + x2)–1 + C by substitution

4.  –ln|cos u| + C  or  ln|sec u| + C

5. substitute y = 3x – 1

6. substituting x = cosˇ, dx = –sinˇdˇ and

∫ √Ø1 – x2  dx = –∫ sin2ˇ dˇ

which was evaluated in the book.

7. substitute y = 2x + 5.

8. integrate by parts twice to get

 
ex

(sin x – cos x) + C
 Ø2

10. integrate by parts twice to get

(x(ln x)2 – 2x ln x + 2x)| 1

5

= (5ln 5)2 – 10 ln 5 + 8

= 56.662880725164843...

12.  xarctan x – ⁄ ln(1 + x2) + C

Chapter 13.
1. by the pythagorean theorem, the radius x of 

a slice at height y is √ØR2 – y2 , so the slice’s 

area is πx2 or π(R2– y2).

the volume of air above the water is given by 
integrating from 0 to R – D:

which gives the same result. (it had better!)

2. the integral equals –1. 

2πr(H – ar2) dr

integrating gives the total volume:

V = 2π∫
0

√ØH/a
rH – ar3 dr  = π( H2 

–  H
2
) = πH2

                                     Øa    Ø2a      Ø2a

H

r √ØH/a

ar2

y = ax2

4.  ∫
1

ˆ
π  dx  = π

        Øx2

5. a horizontal line across the dam at height y has 
length

L(t) = 200 + y  meters
                  Ø2

and the total force is given by the integral

F = ∫
0

175

(9.8)(200y) + 4.9y2 dy

3. here the radius 
of a cylinder is r,
and its height is  
H – ar2. as in the 
glue blast example, 
we treat a thin 
cylindrical shell as 
a rolled-up rec-
tangular sheet of 
thickness dr, so its 
volume is

subtracting this from ·πR3 gives the volume 
of water of depth D:

V = π∫
0

R–D

(R2 – y2) dy

after doing the algebra (expanding all 
expressions and combining terms), this 
works out to

 π(·R3 – RD2 + ‹D3)

π(RD2 – ‹D3)

you can also find the volume of water by integrating 
from the bottom up. set the hemisphere in positive 
territory, with its base at the origin. the water’s 
volume is 

    π∫
0

D

R2 – (R – y)2 dy = π∫
0

D

2Ry – y2 dy


